An explicit independence constraint for factorised adaptation in speech recognition

نویسندگان

  • Y.-Q. Wang
  • Mark J. F. Gales
چکیده

Speech signals are usually affected by multiple acoustic factors, such as speaker characteristics and environment differences. Usually, the combined effect of these factors is modelled by a single transform. Acoustic factorisation splits the transform into several factor transforms, each modelling only one factor. This allows, for example, estimating a speaker transform in a noise condition and applying the same speaker transform in a different noise condition. To achieve this factorisation, it is crucial to keep factor transforms independent of each other. Previous work on acoustic factorisation relies on using different forms of factor transforms and/or the attribute of the data to enforce this independence. In this work, the independence is formulated in mathematically, and an explicit constraint is derived to enforce the independence. Using factorised cluster adaptive training (fCAT) as an application, experimental results demonstrates that the proposed explicit independence constraint helps factorisation when imbalanced adaptation data is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of speaker correlation information for automatic speech recognition

This dissertation addresses the independence of observations assumption which is typically made by today’s automatic speech recognition systems. This assumption ignores within-speaker correlations which are known to exist. The assumption clearly damages the recognition ability of standard speaker independent systems, as can seen by the severe drop in performance exhibited by systems between the...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Adaptation of deep neural network acoustic models using factorised i-vectors

The use of deep neural networks (DNNs) in a hybrid configuration is becoming increasingly popular and successful for speech recognition. One issue with these systems is how to efficiently adapt them to reflect an individual speaker or noise condition. Recently speaker i-vectors have been successfully used as an additional input feature for unsupervised speaker adaptation. In this work the use o...

متن کامل

Speaker adaptation of trajectory HMMs using feature-space MLLR

Recently, a trajectory model, derived from the hidden Markov model (HMM) by imposing explicit relationships between static and dynamic features, has been proposed. The derived model, named trajectory HMM, can alleviate two limitations of the HMM: constant statistics within a state and conditional independence assumption of state output probabilities. In the present paper, a speaker adaptation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013